
  

What’s Algorithm?

 An algorithm is a sequence of unambiguous instructions 
for solving a problem.



  

Properties of Algorithm

 Finiteness

 Definiteness

 Correctness

 Generality

 Sequence



  

Data Types?

Data type of a variable is the set of values 
that the variable may assume.

Some examples in c++
➔Int
➔String
➔Double
➔char



  

Abstract Data Type(ADT)

 An ADT is a set of elements with a collection of well 
defined operations.

 The logiacal picture of the data and the operation to 
manipulate it element. 

 Logical level

 The ADT specifiess

➔ 1.What can be stored in the Abstract Data Type

➔ 2.What operations can be done on/by the ADT.



  

Data Structures

 Data structure is the actual representation of the data 
and the algorithm to manipulate it’s element.

 Or simply the implementation level

 Some standard c++ ADT examples

➔ Stack

➔ Queue

➔ List etc...



  

Type of Data structures

1)Primitive
2)Non-premitive

1.Linear
2.Non-linear.



  

Analysis of algorithms

The process of determining the amount of 
computing time and storage space 
required by diferent algorithms.

Why because resources are limited
➔ Running time(most important)
➔ Memory usage
➔ Communication Bandwidth



  

Complexity Analysis

The systematic study of the cost of 
computation

➔Time complexity

➔Space complexity



  

Space Complexity

The amount of memory required for the 
algorithm to finish execution.

➔Fixeds variables and constants

➔Dynamics dynamic data structres and 
recursion call



  

Time Complexity

The amount of time it takes to run an algorithm

Estimated by counting number of elementary operation 
performed by the algorithm.

Elementary operations ares

➔• Assignment Operation

➔• Single Input/Output Operation

➔• Single Boolean Operations

➔• Single Arithmetic Operations

➔• Function Return



  

Example 1

●  



  

Example 2

void func(){
int x=0, i=0, j=1;
cout<< “Enter an Integer value”;
cin>>n;
while (i<n){
x++;
i++;

}
while (j<n){
j++;

}
}
T(n)  = 1 + 1 + 1 + 1 + 1 + (n+1) + n + (n-1) = 5n + 5



  

Formal Approach

 Analysis can be simplified by using some formal approach 
in which case we can ignore initializations, loop control, 
and book keeping.

 For loops

for (int i = 1; i <= N; i++) {
sum = sum+i;

}
N

N

i


1

1



  

Formal Approach

For nested loops

for (int i = 1; i <= N; i++) {
for (int j = 1; j <= M; j++) {

sum = sum+i+j;
}

}
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Formal Approach

For consecutive statements

for (int i = 1; i <= N; i++) {
sum = sum+i;

}
for (int i = 1; i <= N; i++) {

for (int j = 1; j <= N; j++) {
sum = sum+i+j;

}
}
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Example

int k=0;

for (int i=1; i<n; i*=2)

for(int j=1; j<n; j++)

k++;

T(n) =  



  

Asymptotic Analysis

Mathematical represenation of algorithm’s 
complexity.

Concerned with how the running time of an 
algorithm increases with the size of the input.

➔• Big-Oh Notation (O)

➔• Big-Theta Notation (Θ)

➔• Big-Omega Notation (Ω)



  

 Big-Oh Notation (O)

 Simply upper bound

 A function t (n) is said to be in O(g(n)), denoted t 
(n) ∈ O(g(n)), if t (n) is bounded above by some 
constant multiple of g(n) for all large n, i.e., if 
there exist some positive constant c and some 

nonnegative integer n₀ such that

➔ t (n) ≤ c*g(n) for all n ≥ n₀ 



  

Examples

 100n + 5 ∈ O(n²)
 Because 100n + 5 ≤ 100n + n (for all n ≥ 5) = 101n ≤ 101n²



  

Big-Omega Notation (Ω)

Simply lower bound

A function t (n) is said to be in (g(n)), denoted 
t (n) ∈ (g(n)), if t (n) is bounded below by 
some positive constant multiple of g(n) for all 
large n, i.e., if there exist some positive 
constant c and some nonnegative integer n₀ 
such that

➔t (n) ≥ cg(n) for all n ≥ n₀.



  

Example

     

 n³ ∈ (n²)
 n³ ≥ n² i.e. we can select c = 1 and n 0 = 0. for all n ≥ 0



  

Big-Theta Notation (Θ)

A function t (n) is said to be in (g(n)), denoted 
t (n) ∈ (g(n)), if t (n) is bounded below by 
some positive constant multiple of g(n) for all 
large n, i.e., if there exist some positive 
constant c and some nonnegative integer n 0 
such that

➔t (n) ≥ cg(n) for all n ≥ n 0 .



  

Example
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