

What’s Algorithm?

 An algorithm is a sequence of unambiguous instructions
for solving a problem.

Properties of Algorithm

 Finiteness

 Definiteness

 Correctness

 Generality

 Sequence

Data Types?

Data type of a variable is the set of values
that the variable may assume.

Some examples in c++
➔Int
➔String
➔Double
➔char

Abstract Data Type(ADT)

 An ADT is a set of elements with a collection of well
defined operations.

 The logiacal picture of the data and the operation to
manipulate it element.

 Logical level

 The ADT specifiess

➔ 1.What can be stored in the Abstract Data Type

➔ 2.What operations can be done on/by the ADT.

Data Structures

 Data structure is the actual representation of the data
and the algorithm to manipulate it’s element.

 Or simply the implementation level

 Some standard c++ ADT examples

➔ Stack

➔ Queue

➔ List etc...

Type of Data structures

1)Primitive
2)Non-premitive

1.Linear
2.Non-linear.

Analysis of algorithms

The process of determining the amount of
computing time and storage space
required by diferent algorithms.

Why because resources are limited
➔ Running time(most important)
➔ Memory usage
➔ Communication Bandwidth

Complexity Analysis

The systematic study of the cost of
computation

➔Time complexity

➔Space complexity

Space Complexity

The amount of memory required for the
algorithm to finish execution.

➔Fixeds variables and constants

➔Dynamics dynamic data structres and
recursion call

Time Complexity

The amount of time it takes to run an algorithm

Estimated by counting number of elementary operation
performed by the algorithm.

Elementary operations ares

➔• Assignment Operation

➔• Single Input/Output Operation

➔• Single Boolean Operations

➔• Single Arithmetic Operations

➔• Function Return

Example 1

●

Example 2

void func(){
int x=0, i=0, j=1;
cout<< “Enter an Integer value”;
cin>>n;
while (i<n){
x++;
i++;

}
while (j<n){
j++;

}
}
T(n) = 1 + 1 + 1 + 1 + 1 + (n+1) + n + (n-1) = 5n + 5

Formal Approach

 Analysis can be simplified by using some formal approach
in which case we can ignore initializations, loop control,
and book keeping.

 For loops

for (int i = 1; i <= N; i++) {
sum = sum+i;

}
N

N

i


1

1

Formal Approach

For nested loops

for (int i = 1; i <= N; i++) {
for (int j = 1; j <= M; j++) {

sum = sum+i+j;
}

}

MNM
N

i

N

i

M

j

222
11 1


 

Formal Approach

For consecutive statements

for (int i = 1; i <= N; i++) {
sum = sum+i;

}
for (int i = 1; i <= N; i++) {

for (int j = 1; j <= N; j++) {
sum = sum+i+j;

}
}

2

1 11

221 NN
N

i

N

j

N

i



















 

Example

int k=0;

for (int i=1; i<n; i*=2)

for(int j=1; j<n; j++)

k++;

T(n) =

Asymptotic Analysis

Mathematical represenation of algorithm’s
complexity.

Concerned with how the running time of an
algorithm increases with the size of the input.

➔• Big-Oh Notation (O)

➔• Big-Theta Notation (Θ)

➔• Big-Omega Notation (Ω)

 Big-Oh Notation (O)

 Simply upper bound

 A function t (n) is said to be in O(g(n)), denoted t
(n) ∈ O(g(n)), if t (n) is bounded above by some
constant multiple of g(n) for all large n, i.e., if
there exist some positive constant c and some

nonnegative integer n₀ such that

➔ t (n) ≤ c*g(n) for all n ≥ n₀

Examples

 100n + 5 ∈ O(n²)
 Because 100n + 5 ≤ 100n + n (for all n ≥ 5) = 101n ≤ 101n²

Big-Omega Notation (Ω)

Simply lower bound

A function t (n) is said to be in (g(n)), denoted
t (n) ∈ (g(n)), if t (n) is bounded below by
some positive constant multiple of g(n) for all
large n, i.e., if there exist some positive
constant c and some nonnegative integer n₀
such that

➔t (n) ≥ cg(n) for all n ≥ n₀.

Example

 n³ ∈ (n²)
 n³ ≥ n² i.e. we can select c = 1 and n 0 = 0. for all n ≥ 0

Big-Theta Notation (Θ)

A function t (n) is said to be in (g(n)), denoted
t (n) ∈ (g(n)), if t (n) is bounded below by
some positive constant multiple of g(n) for all
large n, i.e., if there exist some positive
constant c and some nonnegative integer n 0
such that

➔t (n) ≥ cg(n) for all n ≥ n 0 .

Example

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

