

### **Properties of Algorithm**

- Finiteness
- Definiteness
- Correctness
- > Generality
- Sequence



Data type of a variable is the set of values that the variable may assume.

Some examples in c++

- →Int
- →String
- →Double
- →char

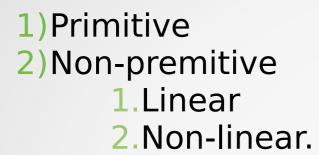
## Abstract Data Type(ADT)

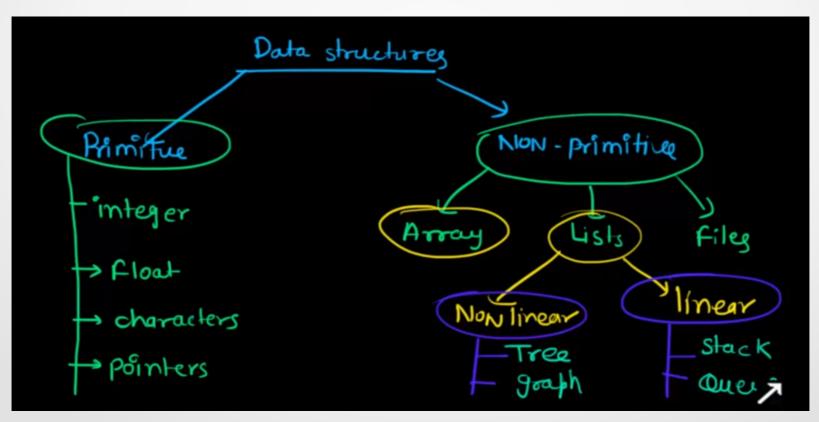
- An ADT is a set of elements with a collection of well defined operations.
- The logiacal picture of the data and the operation to manipulate it element.
- Logical level
- > The ADT specifies:
  - 1.What can be stored in the Abstract Data Type
  - 2.What operations can be done on/by the ADT.

### **Data Structures**

- Data structure is the actual representation of the data and the algorithm to manipulate it's element.
- Or simply the implementation level
- Some standard c++ ADT examples
  - Stack
  - Queue
  - → List etc…

### Type of Data structures





### Analysis of algorithms

The process of determining the amount of computing time and storage space required by different algorithms.

Why because resources are limited

- Running time(most important)
- Memory usage
- Communication Bandwidth

### **Complexity Analysis**

The systematic study of the cost of computation

- Time complexity
- Space complexity

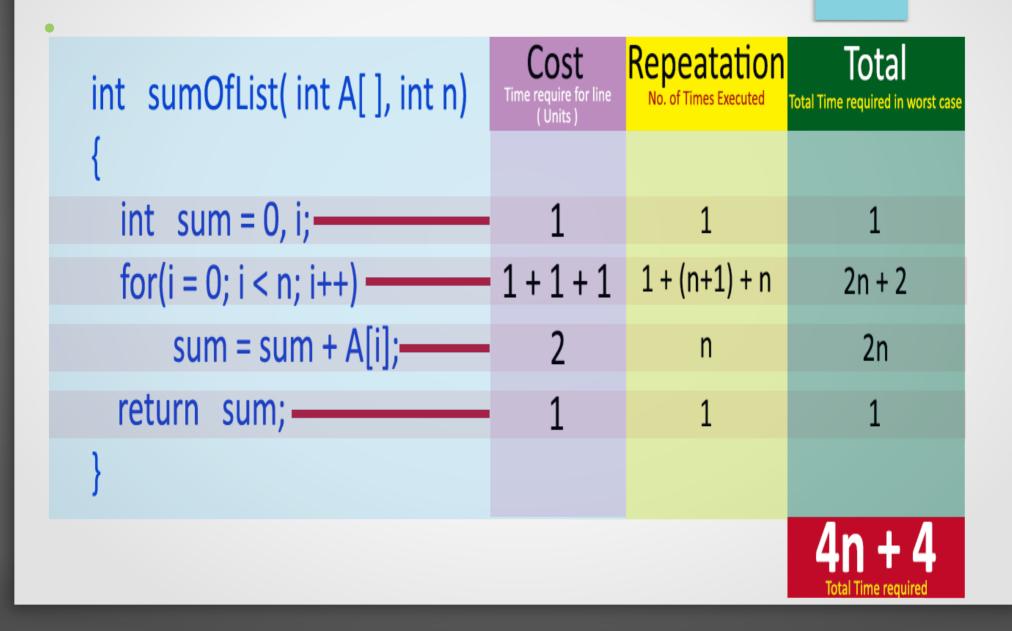
### **Space Complexity**

The amount of memory required for the algorithm to finish execution.

- Fixed: variables and constants
- Dynamic: dynamic data structres and recursion call

### **Time Complexity**

- The amount of time it takes to run an algorithm
- Estimated by counting number of elementary operation performed by the algorithm.
- Elementary operations are:
  - Assignment Operation
  - Single Input/Output Operation
  - Single Boolean Operations
  - Single Arithmetic Operations
  - Function Return



```
void func(){
 int x=0, i=0, j=1;
 cout << "Enter an Integer value";
 cin > >n;
 while (i < n)
  X++;
 i + +;
 }
 while (j < n)
 j++;
 }
T(n) = 1 + 1 + 1 + 1 + 1 + (n+1) + n + (n-1) = 5n + 5
```

### **Formal Approach**

Analysis can be simplified by using some formal approach in which case we can ignore initializations, loop control, and book keeping.

For loops

```
for (int i = 1; i <= N; i++) {
    sum = sum+i;
}</pre>
```

 $\sum_{i=1}^{N} 1 = N$ 

### **Formal Approach**

### For nested loops

for (int i = 1; i <= N; i++) {
 for (int j = 1; j <= M; j++) {
 sum = sum+i+j;
 }
}</pre>

 $\sum_{n=1}^{N}\sum_{m=1}^{M}2=\sum_{m=1}^{N}2M=2MN$ i=1 j=1i=1

### **Formal Approach**

#### For consecutive statements

```
for (int i = 1; i <= N; i++) {
    sum = sum+i;
}
for (int i = 1; i <= N; i++) {
    for (int j = 1; j <= N; j++) {
        sum = sum+i+j;
    }
}</pre>
```

$$\sum_{i=1}^{N} 1 \left[ + \left[ \sum_{i=1}^{N} \sum_{j=1}^{N} 2 \right] = N + 2N^{2}$$

 $\succ T(n) = f(x) = \sum_{j=1}^{\log(n)} \sum_{j=1}^{n} 1$ 

### Asymptotic Analysis

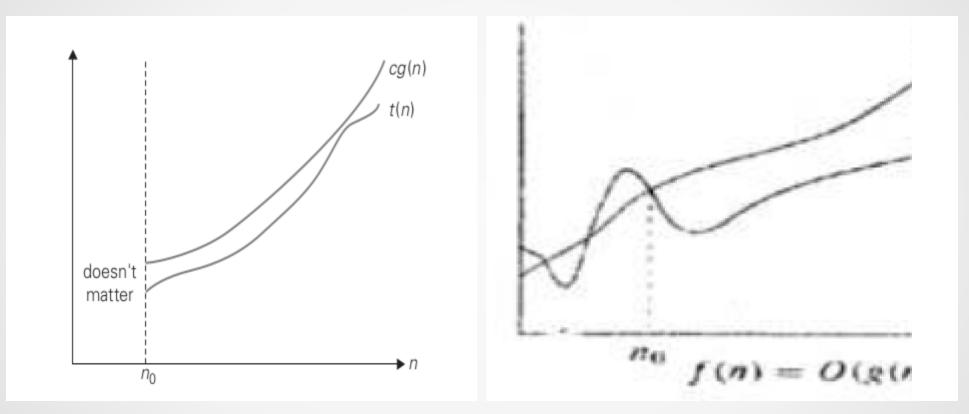
- Mathematical represention of algorithm's complexity.
- Concerned with how the running time of an algorithm increases with the size of the input.
  - Big-Oh Notation (O)
  - → Big-Theta Notation ( $\Theta$ )
  - $\rightarrow$  Big-Omega Notation (Ω)

### **Big-Oh Notation (O)**

#### Simply upper bound

A function t (n) is said to be in O(g(n)), denoted t (n) ∈ O(g(n)), if t (n) is bounded above by some constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some nonnegative integer n₀ such that

t (n) 
$$\leq c^*g(n)$$
 for all  $n \geq n_0$ 



#### > 100n + 5 $\in$ O(n<sup>2</sup>)

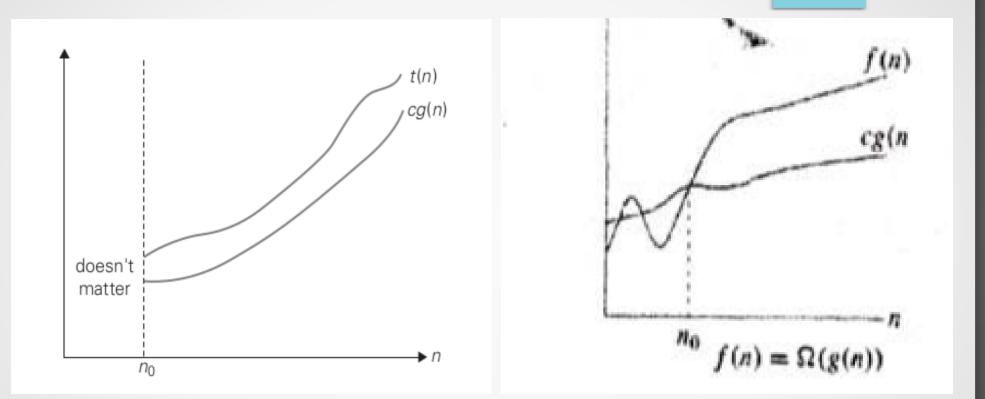
▶ Because  $100n + 5 \le 100n + n$  (for all  $n \ge 5$ ) =  $101n \le 101n^2$ 

#### Big-Omega Notation ( $\Omega$ )

### Simply lower bound

A function t (n) is said to be in (g(n)), denoted t (n) ∈ (g(n)), if t (n) is bounded below by some positive constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some nonnegative integer n₀ such that

 $\rightarrow$ t (n)  $\geq$  cg(n) for all n  $\geq$  n<sub>0</sub>.



 $h^3 \in (n^2)$ 

 $rac{}{}^{2}$  n<sup>3</sup>  $\geq$  n<sup>2</sup> i.e. we can select c = 1 and n 0 = 0. for all n  $\geq$  0

#### Big-Theta Notation ( $\Theta$ )

➤ A function t (n) is said to be in (g(n)), denoted t (n) ∈ (g(n)), if t (n) is bounded below by some positive constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some nonnegative integer n 0 such that

 $\rightarrow$ t (n)  $\geq$  cg(n) for all n  $\geq$  n 0.

