
  

What’s Algorithm?

 An algorithm is a sequence of unambiguous instructions 
for solving a problem.



  

Properties of Algorithm

 Finiteness

 Definiteness

 Correctness

 Generality

 Sequence



  

Data Types?

Data type of a variable is the set of values 
that the variable may assume.

Some examples in c++
➔Int
➔String
➔Double
➔char



  

Abstract Data Type(ADT)

 An ADT is a set of elements with a collection of well 
defined operations.

 The logiacal picture of the data and the operation to 
manipulate it element. 

 Logical level

 The ADT specifiess

➔ 1.What can be stored in the Abstract Data Type

➔ 2.What operations can be done on/by the ADT.



  

Data Structures

 Data structure is the actual representation of the data 
and the algorithm to manipulate it’s element.

 Or simply the implementation level

 Some standard c++ ADT examples

➔ Stack

➔ Queue

➔ List etc...



  

Type of Data structures

1)Primitive
2)Non-premitive

1.Linear
2.Non-linear.



  

Analysis of algorithms

The process of determining the amount of 
computing time and storage space 
required by diferent algorithms.

Why because resources are limited
➔ Running time(most important)
➔ Memory usage
➔ Communication Bandwidth



  

Complexity Analysis

The systematic study of the cost of 
computation

➔Time complexity

➔Space complexity



  

Space Complexity

The amount of memory required for the 
algorithm to finish execution.

➔Fixeds variables and constants

➔Dynamics dynamic data structres and 
recursion call



  

Time Complexity

The amount of time it takes to run an algorithm

Estimated by counting number of elementary operation 
performed by the algorithm.

Elementary operations ares

➔• Assignment Operation

➔• Single Input/Output Operation

➔• Single Boolean Operations

➔• Single Arithmetic Operations

➔• Function Return



  

Example 1

●  



  

Example 2

void func(){
int x=0, i=0, j=1;
cout<< “Enter an Integer value”;
cin>>n;
while (i<n){
x++;
i++;

}
while (j<n){
j++;

}
}
T(n)  = 1 + 1 + 1 + 1 + 1 + (n+1) + n + (n-1) = 5n + 5



  

Formal Approach

 Analysis can be simplified by using some formal approach 
in which case we can ignore initializations, loop control, 
and book keeping.

 For loops

for (int i = 1; i <= N; i++) {
sum = sum+i;

}
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Formal Approach

For nested loops

for (int i = 1; i <= N; i++) {
for (int j = 1; j <= M; j++) {

sum = sum+i+j;
}

}
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Formal Approach

For consecutive statements

for (int i = 1; i <= N; i++) {
sum = sum+i;

}
for (int i = 1; i <= N; i++) {

for (int j = 1; j <= N; j++) {
sum = sum+i+j;

}
}
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Example

int k=0;

for (int i=1; i<n; i*=2)

for(int j=1; j<n; j++)

k++;

T(n) =  



  

Asymptotic Analysis

Mathematical represenation of algorithm’s 
complexity.

Concerned with how the running time of an 
algorithm increases with the size of the input.

➔• Big-Oh Notation (O)

➔• Big-Theta Notation (Θ)

➔• Big-Omega Notation (Ω)



  

 Big-Oh Notation (O)

 Simply upper bound

 A function t (n) is said to be in O(g(n)), denoted t 
(n) ∈ O(g(n)), if t (n) is bounded above by some 
constant multiple of g(n) for all large n, i.e., if 
there exist some positive constant c and some 

nonnegative integer n₀ such that

➔ t (n) ≤ c*g(n) for all n ≥ n₀ 



  

Examples

 100n + 5 ∈ O(n²)
 Because 100n + 5 ≤ 100n + n (for all n ≥ 5) = 101n ≤ 101n²



  

Big-Omega Notation (Ω)

Simply lower bound

A function t (n) is said to be in (g(n)), denoted 
t (n) ∈ (g(n)), if t (n) is bounded below by 
some positive constant multiple of g(n) for all 
large n, i.e., if there exist some positive 
constant c and some nonnegative integer n₀ 
such that

➔t (n) ≥ cg(n) for all n ≥ n₀.



  

Example

     

 n³ ∈ (n²)
 n³ ≥ n² i.e. we can select c = 1 and n 0 = 0. for all n ≥ 0



  

Big-Theta Notation (Θ)

A function t (n) is said to be in (g(n)), denoted 
t (n) ∈ (g(n)), if t (n) is bounded below by 
some positive constant multiple of g(n) for all 
large n, i.e., if there exist some positive 
constant c and some nonnegative integer n 0 
such that

➔t (n) ≥ cg(n) for all n ≥ n 0 .



  

Example
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