

What’s Algorithm?

 An algorithm is a sequence of unambiguous instructions
for solving a problem.

Properties of Algorithm

 Finiteness

 Definiteness

 Correctness

 Generality

 Sequence

Data Types?

Data type of a variable is the set of values
that the variable may assume.

Some examples in c++
➔Int
➔String
➔Double
➔char

Abstract Data Type(ADT)

 An ADT is a set of elements with a collection of well
defined operations.

 The logiacal picture of the data and the operation to
manipulate it element.

 Logical level

 The ADT specifiess

➔ 1.What can be stored in the Abstract Data Type

➔ 2.What operations can be done on/by the ADT.

Data Structures

 Data structure is the actual representation of the data
and the algorithm to manipulate it’s element.

 Or simply the implementation level

 Some standard c++ ADT examples

➔ Stack

➔ Queue

➔ List etc...

Type of Data structures

1)Primitive
2)Non-premitive

1.Linear
2.Non-linear.

Analysis of algorithms

The process of determining the amount of
computing time and storage space
required by diferent algorithms.

Why because resources are limited
➔ Running time(most important)
➔ Memory usage
➔ Communication Bandwidth

Complexity Analysis

The systematic study of the cost of
computation

➔Time complexity

➔Space complexity

Space Complexity

The amount of memory required for the
algorithm to finish execution.

➔Fixeds variables and constants

➔Dynamics dynamic data structres and
recursion call

Time Complexity

The amount of time it takes to run an algorithm

Estimated by counting number of elementary operation
performed by the algorithm.

Elementary operations ares

➔• Assignment Operation

➔• Single Input/Output Operation

➔• Single Boolean Operations

➔• Single Arithmetic Operations

➔• Function Return

Example 1

●

Example 2

void func(){
int x=0, i=0, j=1;
cout<< “Enter an Integer value”;
cin>>n;
while (i<n){
x++;
i++;

}
while (j<n){
j++;

}
}
T(n) = 1 + 1 + 1 + 1 + 1 + (n+1) + n + (n-1) = 5n + 5

Formal Approach

 Analysis can be simplified by using some formal approach
in which case we can ignore initializations, loop control,
and book keeping.

 For loops

for (int i = 1; i <= N; i++) {
sum = sum+i;

}
N

N

i

1

1

Formal Approach

For nested loops

for (int i = 1; i <= N; i++) {
for (int j = 1; j <= M; j++) {

sum = sum+i+j;
}

}

MNM
N

i

N

i

M

j

222
11 1

Formal Approach

For consecutive statements

for (int i = 1; i <= N; i++) {
sum = sum+i;

}
for (int i = 1; i <= N; i++) {

for (int j = 1; j <= N; j++) {
sum = sum+i+j;

}
}

2

1 11

221 NN
N

i

N

j

N

i

Example

int k=0;

for (int i=1; i<n; i*=2)

for(int j=1; j<n; j++)

k++;

T(n) =

Asymptotic Analysis

Mathematical represenation of algorithm’s
complexity.

Concerned with how the running time of an
algorithm increases with the size of the input.

➔• Big-Oh Notation (O)

➔• Big-Theta Notation (Θ)

➔• Big-Omega Notation (Ω)

 Big-Oh Notation (O)

 Simply upper bound

 A function t (n) is said to be in O(g(n)), denoted t
(n) ∈ O(g(n)), if t (n) is bounded above by some
constant multiple of g(n) for all large n, i.e., if
there exist some positive constant c and some

nonnegative integer n₀ such that

➔ t (n) ≤ c*g(n) for all n ≥ n₀

Examples

 100n + 5 ∈ O(n²)
 Because 100n + 5 ≤ 100n + n (for all n ≥ 5) = 101n ≤ 101n²

Big-Omega Notation (Ω)

Simply lower bound

A function t (n) is said to be in (g(n)), denoted
t (n) ∈ (g(n)), if t (n) is bounded below by
some positive constant multiple of g(n) for all
large n, i.e., if there exist some positive
constant c and some nonnegative integer n₀
such that

➔t (n) ≥ cg(n) for all n ≥ n₀.

Example

 n³ ∈ (n²)
 n³ ≥ n² i.e. we can select c = 1 and n 0 = 0. for all n ≥ 0

Big-Theta Notation (Θ)

A function t (n) is said to be in (g(n)), denoted
t (n) ∈ (g(n)), if t (n) is bounded below by
some positive constant multiple of g(n) for all
large n, i.e., if there exist some positive
constant c and some nonnegative integer n 0
such that

➔t (n) ≥ cg(n) for all n ≥ n 0 .

Example

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

